LibraryLink ToToggle FramesPrintFeedback

Dead Letter Channel

The dead letter channel pattern, shown in Figure 5.3, describes the actions to take when the messaging system fails to deliver a message to the intended recipient. This includes such features as retrying delivery and, if delivery ultimately fails, sending the message to a dead letter channel, which archives the undelivered messages.

The following example shows how to create a dead letter channel using Java DSL:


Where the errorHandler() method is a Java DSL interceptor, which implies that all of the routes defined in the current route builder are affected by this setting. The deadLetterChannel() method is a Java DSL command that creates a new dead letter channel with the specified destination endpoint, seda:errors.

The errorHandler() interceptor provides a catch-all mechanism for handling all error types. If you want to apply a more fine-grained approach to exception handling, you can use the onException clauses instead(see onException clause).

Normally, you do not send a message straight to the dead letter channel, if a delivery attempt fails. Instead, you re-attempt delivery up to some maximum limit, and after all redelivery attempts fail you would send the message to the dead letter channel. To customize message redelivery, you can configure the dead letter channel to have a redelivery policy. For example, to specify a maximum of two redelivery attempts, and to apply an exponential backoff algorithm to the time delay between delivery attempts, you can configure the dead letter channel as follows:


Where you set the redelivery options on the dead letter channel by invoking the relevant methods in a chain (each method in the chain returns a reference to the current RedeliveryPolicy object). Table 5.1 summarizes the methods that you can use to set redelivery policies.

Table 5.1. Redelivery Policy Settings

Method SignatureDefaultDescription
backOffMultiplier(double multiplier)2

If exponential backoff is enabled, let m be the backoff multiplier and let d be the initial delay. The sequence of redelivery attempts are then timed as follows:

d, m*d, m*m*d, m*m*m*d, ...
collisionAvoidancePercent(double collisionAvoidancePercent)15If collision avoidance is enabled, let p be the collision avoidance percent. The collision avoidance policy then tweaks the next delay by a random amount, up to plus/minus p% of its current value.
delayPattern(String delayPattern)NoneApache Camel 2.0:
disableRedelivery()trueApache Camel 2.0: Disables the redelivery feature. To enable redelivery, set maximumRedeliveries() to a positive integer value.
handled(boolean handled)trueApache Camel 2.0: If true, the current exception is cleared when the message is moved to the dead letter channel; if false, the exception is propagated back to the client.
initialRedeliveryDelay(long initialRedeliveryDelay)1000Specifies the delay (in milliseconds) before attempting the first redelivery.
logStackTrace(boolean logStackTrace)falseApache Camel 2.0: If true, the JVM stack trace is included in the error logs.
maximumRedeliveries(int maximumRedeliveries)6Maximum number of delivery attempts.
maximumRedeliveries(int maximumRedeliveries)0Apache Camel 2.0: Maximum number of delivery attempts.
maximumRedeliveryDelay(long maxDelay)60000Apache Camel 2.0: When using an exponential backoff strategy (see useExponentialBackOff()), it is theoretically possible for the redelivery delay to increase without limit. This property imposes an upper limit on the redelivery delay (in milliseconds)
onRedelivery(Processor processor)NoneApache Camel 2.0: Configures a processor that gets called before every redelivery attempt.
redeliveryDelay(long int)0Apache Camel 2.0: Specifies the delay (in milliseconds) between redelivery attempts.
retriesExhaustedLogLevel(LoggingLevel logLevel)LoggingLevel.ERRORApache Camel 2.0: Specifies the logging level at which to log delivery failure (specified as an org.apache.camel.LoggingLevel constant).
retryAttemptedLogLevel(LoggingLevel logLevel)LoggingLevel.DEBUGApache Camel 2.0: Specifies the logging level at which to redelivery attempts (specified as an org.apache.camel.LoggingLevel constant).
useCollisionAvoidance()falseEnables collision avoidence, which adds some randomization to the backoff timings to reduce contention probability.
useOriginalMessage()falseApache Camel 2.0: If this feature is enabled, the message sent to the dead letter channel is a copy of the original message exchange, as it existed at the beginning of the route (in the from() node).
useExponentialBackOff()falseEnables exponential backoff.

If Apache Camel attempts to redeliver a message, it automatically sets the headers described in Table 5.2 on the In message.

Available as of Apache Camel 2.0 Because an exchange object is subject to modification as it passes through the route, the exchange that is current when an exception is raised is not necessarily the copy that you would want to store in the dead letter channel. In many cases, it is preferable to log the message that arrived at the start of the route, before it was subject to any kind of transformation by the route. For example, consider the following route:


The preceding route listen for incoming JMS messages and then processes the messages using the sequence of beans: validateOrder, transformOrder, and handleOrder. But when an error occurs, we do not know in which state the message is in. Did the error happen before the transformOrder bean or after? We can ensure that the original message from jms:queue:order:input is logged to the dead letter channel by enabling the useOriginalMessage option as follows:

// will use original body

Available as of Apache Camel 2.0 The delayPattern option is used to specify delays for particular ranges of the redelivery count. The delay pattern has the following syntax: limit1:delay1;limit2:delay2;limit3:delay3;..., where each delayN is applied to redeliveries in the range limitN <= redeliveryCount < limitN+1

For example, consider the pattern, 5:1000;10:5000;20:20000, which defines three groups and results in the following redelivery delays:

You can start a group with limit 0 to define a starting delay. For example, 0:1000;5:5000 results in the following redelivery delays:

There is no requirement that the next delay should be higher than the previous and you can use any delay value you like. For example, the delay patter, 0:5000;3:1000, starts with a 5 second delay and then reduces the delay to 1 second.

When Apache Camel routes messages, it updates an Exchange property that contains the last endpoint the Exchange was sent to. Hence, you can obtain the URI for the current exchange's most recent destination using the following code:

// Java
String lastEndpointUri = exchange.getProperty(Exchange.TO_ENDPOINT, String.class);

Where Exchange.TO_ENDPOINT is a string constant equal to CamelToEndpoint. This property is updated whenever Camel sends a message to any endpoint.

If an error occurs during routing and the exchange is moved into the dead letter queue, Apache Camel will additionally set a property named CamelFailureEndpoint, which identifies the last destination the exchange was sent to before the error occcured. Hence, you can access the failure endpoint from within a dead letter queue using the following code:

// Java
String failedEndpointUri = exchange.getProperty(Exchange.FAILURE_ENDPOINT, String.class);

Where Exchange.FAILURE_ENDPOINT is a string constant equal to CamelFailureEndpoint.


These properties remain set in the current exchange, even if the failure occurs after the given destination endpoint has finished processing. For example, consider the following route:


Now suppose that a failure happens in the foo bean. In this case the Exchange.TO_ENDPOINT property and the Exchange.FAILURE_ENDPOINT property still contain the value, http://someserver/somepath.

When a dead letter channel is performing redeliveries, it is possible to configure a Processor that is executed just before every redelivery attempt. This can be used for situations where you need to alter the message before it is redelivered.

For example, the following dead letter channel is configured to call the MyRedeliverProcessor before redelivering exchanges:

// we configure our Dead Letter Channel to invoke
// MyRedeliveryProcessor before a redelivery is
// attempted. This allows us to alter the message before
        .onRedelivery(new MyRedeliverProcessor())
        // setting delay to zero is just to make unit teting faster

Where the MyRedeliveryProcessor process is implemented as follows:

// This is our processor that is executed before every redelivery attempt
// here we can do what we want in the java code, such as altering the message
public class MyRedeliverProcessor implements Processor {

    public void process(Exchange exchange) throws Exception {
        // the message is being redelivered so we can alter it

        // we just append the redelivery counter to the body
        // you can of course do all kind of stuff instead
        String body = exchange.getIn().getBody(String.class);
        int count = exchange.getIn().getHeader("CamelRedeliveryCounter", Integer.class);

        exchange.getIn().setBody(body + count);

Instead of using the errorHandler() interceptor in your route builder, you can define a series of onException() clauses that define different redelivery policies and different dead letter channels for various exception types. For example, to define distinct behavior for each of the NullPointerException, IOException, and Exception types, you can define the following rules in your route builder using Java DSL:

    .setHeader("messageInfo", "Oh dear! An NPE.")

    .setHeader("messageInfo", "Oh dear! Some kind of I/O exception.")

    .setHeader("messageInfo", "Oh dear! An exception.")


Where the redelivery options are specified by chaining the redelivery policy methods (as listed in Table 5.1), and you specify the dead letter channel's endpoint using the to() DSL command. You can also call other Java DSL commands in the onException() clauses. For example, the preceding example calls setHeader() to record some error details in a message header named, messageInfo.

In this example, the NullPointerException and the IOException exception types are configured specially. All other exception types are handled by the generic Exception exception interceptor. By default, Apache Camel applies the exception interceptor that most closely matches the thrown exception. If it fails to find an exact match, it tries to match the closest base type, and so on. Finally, if no other interceptor matches, the interceptor for the Exception type matches all remaining exceptions.